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Abstract Methods for simulating evaporative water loss from Earth's large lakes have lagged behind
advances in hydrodynamic modeling. Here we explore use of oceanographic models to simulate lake
evaporation from a long-term water balance perspective. More specifically, we compare long-term monthly
simulations of latent heat flux from two configurations of a current operational hydrodynamic forecasting
system (based on the Finite Volume Community Ocean Model, or FVCOM) for the Laurentian Great
Lakes. We then compare these simulations to comparable simulations from a legacy conventional lake
thermodynamics model, and from a recently developed statistical water balance model. We find that one
of the FVCOM configurations that is currently used in operations for short-term hydrodynamic forecast
guidance is also suitable for real-time simulation of evaporation from very large lakes. The operational
versions of FVCOM should therefore be considered a readily available tool for supporting regional water
supply management and, pending further research, extended water supply forecasting.

1. Introduction
Using numerical models to accurately simulate turbulent heat fluxes from Earth's surface waters is a critical
stepping stone toward successfully forecasting regional and continental-scale hydrological and meteorolog-
ical processes (Deacu et al., 2012; Ghanbari & Bravo, 2008; Notaro et al., 2015). Accurately simulating these
processes is also critical to resolving heat and mass fluxes from oceans and large lakes (Assel et al., 2004;
Gronewold & Stow, 2014). While the state of the art in ocean flux modeling has advanced steadily over recent
decades, evaluations of flux algorithms from an evaporative water loss perspective, particularly for large
freshwater systems, have lagged behind, primarily due to sparse or unavailable validation data. We find,
more specifically, that lake evaporation is commonly inferred through simple water balance accounting in
which evaporation is calculated as a residual from other more readily measurable water balance components
such as lake inflow, outflow, and precipitation (Gianniou & Antonopoulos, 2007; Hostetler & Bartlein, 1990;
Quinn, 1979). Satellite-based measurements have also been successfully applied to studies on the water bal-
ance of large lakes but typically cannot differentiate lake evaporation from other water balance components
without local in situ meteorological and hydrological data (Alsdorf et al., 2001; Swenson & Wahr, 2009; Wahr
et al., 1998).

On the Laurentian Great Lakes (hereafter referred to simply as “the Great Lakes”), which includes the
largest lake on Earth by surface area (Lake Superior), historical studies indicate that evaporation is roughly
equivalent on annual time scales to over-lake precipitation and lateral tributary runoff (Gronewold et al.,
2013; Lenters, 2001; Quinn, 2002; Spence et al., 2013). Nearly all of these studies, however, were based on
a legacy data set (Hunter et al., 2015) of simulated monthly total lakewide evaporation derived from a rela-
tively outdated, conceptual one-dimensional thermodynamics model (Croley, 1989, 1992). Importantly, the
boundary conditions for this legacy evaporation model were defined through coarse spatiotemporal inter-
polation of land-based meteorological measurements (including cloud cover and air temperature) that were
quality controlled over a period lasting from days to weeks (Hunter et al., 2015). Model calibration, fur-
thermore, was based solely on lakewide average surface water temperature data; in situ flux measurements,
which would have provided a more robust basis for calibration and verification, were not available when
the above-referenced historical water balance studies were published.
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Consequently, there are significant but unacknowledged uncertainties in Great Lakes water balance esti-
mates that have served as the basis for historical studies and regional water management planning decisions.
These uncertainties, in addition to posing a challenge to water management agencies, have led to confusion
and even misinformation about the drivers of water level variability across the Great Lakes region (Moulton
& Cuthbert, 2000). The urgency of resolving these uncertainties was underscored during dramatic declines
in Great Lakes water levels in the late 1990s and the unprecedented period of persistent low water levels that
followed (Sellinger et al., 2007). In public discourse, the low water level conditions during this period were
misattributed to historical dredging operations and interbasin water diversions (Gronewold & Stow, 2014).
Scientists and practitioners, despite an understanding of how increased evaporation likely led directly to
water level declines (Assel et al., 2004), were not able to use state-of-the-art operational oceanographic mod-
els or data sets to support their work and to guide public perceptions. Important advancements were being
made in regional operational oceanographic numerical modeling at that time (Deacu et al., 2012; Pietroniro
et al., 2007; Schwab & Bedford, 1994), but the modeling systems were used predominantly for simulating
and forecasting meteorological-scale events (including storm surge) over relatively short time horizons (out
to 5 days), and they had not been verified from a turbulent heat flux or water mass balance perspective.

To use these state-of-the-art operational oceanographic models in regional water balance and water level
accounting, two important advancements were needed. First, in situ eddy-covariance stations needed to be
deployed across the Great Lakes to (among other objectives) assess and refine the intrinsic flux algorithms
in the models. To date, this step has been achieved; a small network of in situ eddy-covariance stations
was deployed across the Great Lakes through an initiative launched by the International Joint Commission
(Blanken et al., 2011; Spence et al., 2011) in the mid- to late-2000s, and the measurements have been used
to validate the algorithms encoded in the operational models (Charusombat et al., 2018; Deacu et al., 2012;
Fujisaki-Manome et al., 2017).

The second advancement, which we address in this study, is the testing of lakewide simulations of evapo-
ration from these models from a mass balance perspective. More specifically, we use existing operational
oceanographic models within the National Oceanic and Atmospheric Administration (NOAA) to simulate
evaporation from the Great Lakes and test them according to criteria relevant to water resources manage-
ment agencies, including those that issue water supply forecasts. Our approach represents a rare evaluation
of a community ocean model and its underlying heat flux algorithms from a domain-scale evaporation per-
spective. Successfully demonstrating the capability of simulating lakewide evaporation rates would justify
immediate use of these models in their new operational settings while supporting not only a broader under-
standing of drivers of water level change throughout the region (Assel et al., 2004; Gronewold & Stow, 2014)
but also the potential for using state-of-the-art oceanographic models to reconcile uncertainties in the water
balance of large freshwater systems around the world.

2. Methods
To better understand the potential utility of state-of-the-art oceanographic models for simulating and fore-
casting the water balance of large lake systems, we generate and assess results from two configurations of a
modeling system currently deployed in operational hydrodynamic forecasting (Anderson et al., 2018; Kelley
et al., 2018) for Lake Erie (one of the five Great Lakes). We then compare these results to those from a legacy
lake evaporation model, and a recently developed statistical lake water balance model.

2.1. Model Simulations
The Finite Volume Community Ocean Model (FVCOM; Chen et al., 2006) is an unstructured-grid,
three-dimensional ocean model that is being systematically customized and implemented into an update of
the Great Lakes Operational Forecast System (GLOFS). GLOFS is a set of short-term hydrodynamic forecast
models maintained by NOAA's National Ocean Service for operational forecast guidance and support of nav-
igation, spill response, search and rescue operations, and recreational safety (Anderson et al., 2018; Kelley
et al., 2018; Schwab & Bedford, 1994). FVCOM has been successfully implemented in several ocean and
Great Lakes studies (Anderson et al., 2015; Fujisaki-Manome et al., 2013, 2017; Rowe et al., 2017), includ-
ing simulation of ice conditions using the Los Alamos Sea Ice Model (CICE; Hunke et al., 2010), which is
internally coupled with FVCOM. Further details about model setup for the Lake Erie Operational Forecast
System (LEOFS), a subset of GLOFS, can be found in Anderson et al. (2018). In this study, evaporation from
LEOFS is evaluated using two available heat flux algorithms native to FVCOM-CICE.
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The first configuration of FVCOM-CICE employs the SOLAR flux algorithm, which is the existing opera-
tional setup of LEOFS. The SOLAR algorithm, developed at the NOAA Great Lakes Environmental Research
Laboratory (GLERL) for application to the Great Lakes, solves standard bulk flux expressions for latent and
sensible heat based on Monin-Obukhov Similarity Theory (Foken, 2006; Kantha & Clayson, 2004). SOLAR
has served as the legacy flux algorithm for Great Lakes operational hydrodynamic forecasting following the
initial implementation of GLOFS and has subsequently been applied to other research projects (Anderson
& Schwab, 2013; Beletsky & Schwab, 2001).

Our second configuration of FVCOM-CICE employs the Coupled Ocean Atmosphere Response Experi-
ment (COARE) flux algorithm (Fairall et al., 1996, 2003). The COARE algorithm currently represents the
state of the art in ocean flux modeling but, because it was developed after initial development of GLOFS, is
being considered for flux models on the Great Lakes for the first time in this study. A freshwater parame-
terization of COARE is included within FVCOM and uses Monin-Obukhov Similarity Theory with minor
differences in stability functions relative to SOLAR. Our study therefore represents a unique opportunity to
evaluate potential improvements to the flux algorithm within LEOFS from not only a water balance perspec-
tive but a meteorological and hydrodynamic perspective as well. Both configurations utilize native GLOFS
meteorological forcings as boundary conditions (for details, see Kelley et al., 2018; Schwab & Bedford, 1994).

We ran the two FVCOM configurations over a historical period from January 2004 through December 2016
(Anderson et al., 2018), with the 2004 calendar year set aside as a spin-up period. We extracted gridded values
for latent heat flux and converted them to evaporation (in units of mm over the surface of Lake Erie). We
then aggregated these variables across the entire surface of Lake Erie to obtain an estimate of total lakewide
evaporation at each time step.

Similarly, we extracted simulated evaporation from the Large Lakes Thermodynamics Model (LLTM). The
LLTM is the previously referenced legacy model developed at NOAA GLERL for Great Lakes water balance
modeling (Croley & Hartmann, 1987; Croley, 1989, 1992) and employed operationally by regional water
resources management agencies in seasonal water supply forecasting (Gronewold et al., 2011). For this study,
we extracted daily lakewide evaporation for Lake Erie from 2005 through 2016 (coinciding with the period
used for the FVCOM runs) from the experimental configuration of LLTM maintained at NOAA GLERL as
part of a research-oriented long-term hydrometeorological database (Hunter et al., 2015).

2.2. Model Verification
Verifying modeled evaporation is a challenge for any freshwater body, and it is particularly challenging for
the Great Lakes given their vast surface areas, the intrinsic spatiotemporal variability of fluxes across those
surfaces (Blanken et al., 2000), and the spatial coverage of the valuable (but relatively sparse) in situ flux
monitoring network (Blanken et al., 2011; Spence et al., 2011, 2013). While the recent model evaluation
studies utilizing this monitoring network (Charusombat et al., 2018; Fujisaki-Manome et al., 2017) indicate
that the flux algorithms in FVCOM-COARE and FVCOM-SOLAR provide reasonable simulations of sensible
and latent heat fluxes at discrete monitoring points, we know of no previous study that has explicitly verified
lakewide simulations of evaporation for any configuration of FVCOM.

We therefore take two approaches to verifying the FVCOM and LLTM models from a lake water balance
perspective. First, we compare simulated lakewide average surface water temperatures across Lake Erie
from each model to satellite-derived temperatures from the Great Lakes Surface Environmental Analysis
(GLSEA; Leshkevich et al., 1996; Schwab et al., 1999). The GLSEA is commonly employed in Great Lakes
regional hydrodynamics and lake physics studies as a basis of comparison for surface water temperature and
other variables (Dupong et al., 2012; Holman et al., 2012; Notaro et al., 2013).

We then compare simulated lakewide evaporation from each model to monthly total lakewide evaporation
estimates from a recently developed statistical water balance model. This model, commonly referred to as
the large lake statistical water balance model, or L2SWBM (Gronewold et al., 2016), employs a Bayesian
modeling framework (Press, 2003; Van Dongen, 2006) to infer posterior probability distributions for monthly
total values of major water balance components of the Great Lakes. The L2SWBM reconciles each lake's
long-term water balance using historical water levels and readily available historical data sets of the water
balance. For this study, we ran the L2SWBM across all of the Great Lakes from 2005 to 2016 and assimilated
estimates of precipitation, evaporation, runoff, and connecting channel flows from multiple existing sources
(described in Gronewold et al., 2016). We also, specifically for this study, included the estimates of Lake Erie
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Figure 1. Time series of monthly total evaporation from Lake Erie based on two configurations of Finite Volume
Community Ocean Model (FVCOM) and the legacy Large Lakes Thermodynamics Model (LLTM).

evaporation from FVCOM-COARE, FVCOM-SOLAR, and LLTM. This approach leads to L2SWBM estimates
of Lake Erie monthly evaporation that reconcile the water balance of the entire Great Lakes basin over
multiple time periods, while also identifying the relative bias of each historical data source (including the
two configurations of FVCOM, and the LLTM).

3. Results
A comparison between model simulations of lakewide evaporation (Figure 1) indicates that from 2005
through 2011, the LLTM typically has lower evaporation rates in the spring months and higher seasonal peak
evaporation in the fall months (2005, 2007, and 2009 are particularly profound examples) when compared
to the two configurations of FVCOM. Also during this period, we find that summer evaporation rates in the

Figure 2. Time series of bias in simulated daily Lake Erie average surface water temperature from each model relative
to GLSEA. GLSEA surface temperatures are also presented (gray line) in each panel for reference. GLSEA = Great
Lakes Surface Environmental Analysis; FVCOM = Finite Volume Community Ocean Model; LLTM = Large Lakes
Thermodynamics Model.
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Figure 3. Cumulative annual (calendar year) lakewide total evaporation from Lake Erie based on two configurations of
FVCOM, the LLTM, and the L2SWBM (L2SWBM results represented by 95% credible intervals). FVCOM = Finite
Volume Community Ocean Model; LLTM = Large Lakes Thermodynamics Model; L2SWBM = large lake statistical
water balance model.

LLTM are typically lower than those in the FVCOM simulations. The time series also indicates that FVCOM
evaporation simulations using the COARE algorithm have a chronic positive bias relative to FVCOM simu-
lations using the SOLAR algorithm throughout most of the study period. This bias is typically pronounced
in summer months and is most noticeable as (in the FVCOM simulations) interruptions in the otherwise
gradual increase in summer and fall evaporation (see, e.g., summer months in 2008 and 2013 through 2015).

Interestingly, with the exception of the noted differences in the rate of increasing evaporation in the sum-
mer months, LLTM and the two configurations of FVCOM are quite similar starting in early 2012 through
early 2016. During this latter period, hydrologic and hydrodynamic conditions across the Great Lakes were
characterized by an abrupt record-setting rise in Lake Superior and Lake Michigan-Huron water levels. This
surge has been attributed to a combination of persistent above-average precipitation across the Great Lakes
region, and below-average evaporation (Gronewold et al., 2016).

A time series of surface temperature bias for each of the models (blue and red vertical lines, Figure 2) relative
to GLSEA temperatures (superimposed in each panel as gray lines in Figure 2) provides insight into the
origins of intermodel discrepancies in simulated evaporation. More specifically, we find that the tendency
for FVCOM-COARE to provide relatively high evaporation estimates can be partially explained by a chronic
positive bias in simulated surface water temperature and that the bias (while persistently positive) has a
strong seasonal pattern. Surface temperature bias in FVCOM-SOLAR also follows a strong seasonal pattern,
albeit one in which bias is low near the end of each calendar year, negative through winter and early spring,
and positive in the summer and early fall. LLTM surface temperature has a strong seasonal bias as well,
but one that is out of phase with the bias in the FVCOM configurations. Interestingly, over time, the bias in
LLTM surface temperature increases while the strength of the seasonal signature decreases.

Our analysis of cumulative evaporation during each calendar year (Figure 3) indicates that over our period
of study, the FVCOM-SOLAR model is most consistent with the long-term water balance of the entire Great
Lakes system. More specifically, we find that cumulative annual evaporation from the FVCOM-SOLAR
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model is closest to evaporation estimated by the L2SWBM for 8 of the 12 years of study, while the LLTM
is closest for the other 4 years. Furthermore, cumulative evaporation from the FVCOM-SOLAR model was
very close to cumulative evaporation from the L2SWBM in nearly every year of our study (with the exception
of 2016), while the LLTM was substantially different from L2SWBM cumulative evaporation in five of our
study years (2011, 2012, 2013, 2015, and 2016). Simulations from FVCOM-COARE were consistently pos-
itively biased and, among the three models, departed most from evaporation estimates in the L2SWBM.
Nonetheless, simulations from FVCOM-COARE could still be useful to the regional water supply modeling
and forecasting community, particularly if used as an input to the L2SWBM.

Despite the strong association between cumulative annual evaporation from FVCOM-SOLAR and
L2SWBM, we find there are discrepancies between the two at subannual time scales reminiscent of seasonal
biases in FVCOM surface water temperature simulations. The graphical depictions of cumulative annual
evaporation, for example, underscore the extent to which FVCOM-SOLAR overestimates evaporation on
Lake Erie in May, June, and July and underestimates Lake Erie evaporation in Autumn. While we expect to
further explore (and potentially remedy) these biases in future research, we find that for now, they are not
much more severe (if at all) than the intermonthly biases in the legacy model (i.e., the LLTM).

4. Summary and Conclusions
We have demonstrated the potential utility of applying state-of-the art numerical ocean models to large lake
water balance accounting. Our representative application is based on an assessment of lakewide evaporation
simulations from two configurations of FVCOM for Lake Erie, a legacy evaporation model (the LLTM), and
a statistical water balance model (the L2SWBM).

More specifically, we have found that the SOLAR configuration of FVCOM, which is currently employed by
NOAA in operational forecasting, is suitable for real-time simulation of Lake Erie evaporation and could be
used alongside (or as a substitute for) the LLTM and other legacy lake models. In other words, the results
presented here support the notion that model-simulated latent heat flux within LEOFS is suitable for trans-
lation into a lakewide total estimate of evaporation, and for public dissemination from within its existing
operational platform. Based on these findings, we further recommend that FVCOM simulations be included
in current applications of the L2SWBM that support operational water management by U.S. and Cana-
dian federal agencies, including the United States Army Corps of Engineers and Environment and Climate
Change Canada.
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